Cu₂O Shape Transition During Cu-Au Oxidation

G.-W Zhou^a, J. A. Eastman^a, R. C. Birtcher^a, P. M. Baldo^a, J. E. Pearson^a, L. Wang^b, J. C. Yang^b

^a Materials Science Division, Argonne National Laboratory

^b Department of Materials Science and Engineering, University of Pittsburgh

Motivation

A general strategy for the protection of underlying metals is alloying, which leads to the formation of a protective oxide layer over the alloy surface due to the preferential oxidation of one component of the alloy, two key factors control protective oxide layer formation during alloy oxidation:

- >Oxide thermodynamic stability
- >Oxide structural continuity

Our study of (001)Cu-Au oxidation

Understand the effect of oxide island morphology on the formation of continuous oxide film during alloy oxidation

Accomplishments and impacts

- Cu₂O islands on Cu-Au undergo a dendritic transition from initially compact shape as growth proceeds
- Demonstrate a non-uniform surface composition develops during Cu-Au oxidation
- Dendritic morphology of oxide islands prevent formation of protective, continuous oxide overlay on metal alloys
- A new approach to creating complex oxide patterns on metal surfaces.

Experimental approach

In-situ environmental transmission electron microscope (MRL, UIUC)

- Visualization of oxidation in real time
- Nanometer scale information
- Information on buried interface
- Local reaction rate and the size and structural evolution of single oxide islands

Proposed mechanism

Dendritic oxide growth in the oxidation of Cu-Au alloys, A: Au-rich zone, B: growth controlled by oxygen surface diffusion, C: growth limited by diffusion through a Au-rich zone.

Comparison (001)Cu and (001)Cu-Au oxidation

at 600°C in 5×10⁻⁴ Torr

Square-elongation transition of Cu₂O islands during (001)Cu oxidation

Dendrtic transition of the initially square-shaped Cu₂O islands during (001)Cu-5at.%Au oxidation

Composition evolution

Typical morphology of dendritic oxide obtained during oxidation of (001)Cu-15at.%Au films at 600° C in $pO_2=5\times10^{-4}$ Torr.

- A) epitaxial Cu2O islands
- B) CuAu₃ ordered phase has formed
- C) Cu-15at.%Au

Future directions and speculation

Dendritic growth: general behavior?

- Alloy systems containing noble metals (Au, Pt, Ag) and oxidizable metals (Cu, Fe, Ni, etc)
- Alloy systems containing two oxidizable metals, but one is more noble than the other

Predictable and controllable?

- Theoretical understanding of the relative importance of diffusivities of reactive species on the oxide growth
- Atomic-scale simulation of dendritic oxide growth

G.-W Zhou, L. Wang, R. C. Birtcher, P. M. Baldo, J. E. Pearson, J. C. Yang, J. A. Eastman, "Cu₂O shape transition during Cu-Au oxidation" (submitted for publication)

